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A THEORY OF DDT IN UNCONFINED FLAMES

1. Introduciion

The quantitative prediction of deflagration-to-detonation transition (DDT) in energetic
gases is one of the major unsolved problems in combustion and detonation theory. Predict-
ing the occurance of DDT has practical importance because of its destructive potential.
It is also an extremely interesting and difficult scientific problem because of the complex
nonlinear interactions among the different contributing physical processes, such as turbu-
lence, shock interactions, and energy release. An early description of experiments on DDT
is given by Brinkley and Lewis {1}, who slso describe Karlovitz's theory [2]. Much of this
theory has subsequently been experimentally confirmed and expanded upon by Oppenheim
and coworkers (3-5). Excellent reviews that summerize our understanding to date have
been given by Lee and Moen [6) and, most recently, by Sheppard end Lee {7). Other useful
summaries of mechanisms of DDT have been given by Lewis and von Elbe (8] and Kuo [9].

Turbulence plays an important role in DDT. Several apparently different mechanisms
for the DDT in confined conditions have been described, each including the turbulence of
the flame and formation of shocks. On large sceles, turbulence deforms the flame front
and increases its surface area. On small scales, it broadens the flame front and causes
mixing. The result is an extended turbulent “flame brush” in which a series of explosions
occurs, one of which finally leads to a detonation. Other routes to detonation may include
an explosion in the boundary layer, or an explosion inside the region between the leading
shock and flame brush.

It is believed that, in most cages, the intrinsic mechanism triggering a detonation is
the explosion of a nonuniformly preconditioned region of fuel in which a spatial gradient
of induction time has been created either by turbulent mixing, shock heating, or both.
This gradient mechanism, first suggested by Zeldovich and collaborators for nonuniform
temperature distributions {10,11], was subsequently found in photo-initiation experiments
by Iee at al. [12], who called it the SWACER mechanism. This mechanism has since
been studied and described extensively (see, for example, [6,13-16]). The mechanisms for
preconditioning the region, that is, the mechanism for preparing an explosive mixture that
has a gradient in induction times, may differ in different situations. It may be created by
a shock wave, turbulence, photo-irradiation, intrinsic tlame instabilities, rarefaction, or a
combination of several of these.

It appears to be very difficult to obtain DDT in unconfined conditions {17--19]. This can
be attributed to the geornctrical effects of expansion: shocks which precede a deflagration

mumipt npproved May 19, 1996




might be weakened, or turbulence might be damped too much ty the expansion, and so
become unable to precondition the mixture. Wagner and coworkers [17] report experiments
in which deflagrations were forced to DDT by passing through screens of specified mesh
sizes. The screens created tu~bulence of the required scale and intensity. These experiments
suggest that an unconfined deflagration could make the transition tv detonation under the
right conditions. This possibility has been suggested for very large vapor clouds {6,20].

A related problem that has been studied experimentally is initiation of detonations
by turbulent jets {18,21-24]. In these experiments, a jet of hot product gases in injected
into an unburned, cold mixture. The turbulence generated by the interaction of this jet
and the background gas created a nonuniform, gieconditioned region in which detonation
may occur. For these experiments, the effects of reflected shocks and interaction with walls
is minimal compared to DDT in tubes. Therefore, these experiments provide imporiant
informeation on the critical size of the region capsble of ixiggering DDT.

We then ask the following question: What are the minimal requirements for DDT in an
idealized situation when all wall effects and incident shocks are eliminated? If we can answer
this question, we have a lower bound for DDT conditions. Knowing the necessary conditions
for unconfined DDT, we may then draw conclusions about the relative importance of wall
effects and shocks of different strengths. One possible application of this theory could be
fo create reproducible detonations in the shortest time end smallest space, ss required for
pulse-detonation engines. Another application is to the theory of supernovae. If DDT does
occur in supernovay, as indicated by observations {25,26), it would arise from an unconfined
transition. Currently, there is no quantitative theory explaining exactly how and when an
unconfined transition wowd oceur.

In this paper, we derive a theory for unconfined DDT. That is, we address the situation
where there are no external or reflected shocks, and no wall effects. We make two basic
assumptions:

i. The gradient mechanism is the inherent mechanism that leads to DDT in unconfined
conditions, and

i1. The sole mechanism for preparing the gradient in induction time iz by turbulent mixing
and local flame quenching. By this assumption, the role of turbulence is to mix high-
entropy products of burning and low-¢ntropy unreacted fuel. Such mixing creates
gradients of temperature and concentration which have opposite signs. Turbulence-
generated shocks are ignored.

Given these assumptions, there are two fundemental ques’ ions to address: 1) What s
the minimum size of a mixed region capable of generating a detonation, and 2) What level




of turbulence is required to create this region? We address these two questions separately,
and then combine the answers to derive the conditions for unconfined DDT. Here we do not
address the question how these conditions may be produced, but give the scale and intensity
of the turbulence that is required. The derived criterion gives lower bounds on conditions
for DDT that does not take into account many secondary effects that may facilitate DDT.

We then conclude with a discussion of the quantitative importance of secondary effects.
2. Critical Size of the Preconditioned Region

In this section we address the first of the two questions formulated in the introduction. We
consider the process of the initiation of detonation that arises from the explosion of reactive
gas with a nornniform distribution of induction times. We assume that the nonuniformity is
a result of mixing of high-entropy products and low-entropy unreacted fuel. We determine
the minimum size L, of a inixed region capable of triggering a detonation. Whether and
how such a region can be created is & separate question that is studied in Section 3.

‘We can imagine a variety of regions of different shapes and degrees of mixing created
by turbulence. Here we consider the simplest representative case of a mixed region with a
lincar one-dimensional distribution of products. In the future, we plan to consider regions
with different shapes, and thus explore the influence of geometry. However, we do not
believe geometrical considerations will qualitatively change our conclusions (Section 3.2).

2.1 Spontaneous Burning

To facilitate the discussion of a nonuniform explosion of a mixed re -ion, it is useful to
discuss in general terms the idea of spontaneous burning. This concept was first introduced
in Zeldovich and Kompaneetz [27]. Consider a mixture with a nonuniform distribution of
temperature T'(z) and chemical composition Y(z). The induction time becomes a function
of spatial coordinate, 7(T(z), Y (x)). In the absence of any physical commurication between
different, fluid elements, the explosion will start st a point of minimum 7, and then will
spread spontaneously with a “phase” speed

D= G;%)’1 , (1)

which can have any value from zero to infinity. A spontaneous reaction wave does not
require any physical agent in order to spread. Therefore, its speed is not limited by the
speed of light. In reality, there is physical cornmunication between fuel elements. If the
gpontaneous velocity is too small, shocks and even heat conduction rnay cause faster lame
propagation than that prescribed by equation (1).



Let 6t be the time during which the bulk of chemical energy is released after the
induction peried is over, §t << 7. We can define the thickness of the spontaneous wave as
lap = Dypbt. If D,p — 0. the thickness of the wave also goes to co. This corresponds to a
constant volume explosion. If D,, is comparable tc the speed of a detonation, on the other
hand, its thickness is also comparable to the thickness of & detonation wave. In this latter
case, 8,p may become much less than the size of the system under consideration. Then the
spontaneous wave may be viewed as discontinuity which obeys the Hugoniot relations for
a discontinuity with energy release.

On a pressure - specific volume plane, spontaneous burning is represented by points
located on a detonation adiabat. This is shown on Figure 1a, where the regimes of spon-
taneous burning occupy the part of the detonation adiabat from point I to point CJ. The
position of the spontaneous regime on the adisbat is determined by the intersection of
the Rayleigh line dP/dV = -(D,;/Vp)? with the detonation adiabat. The regime I cor-
responds to an infinite spontaneocus velocity whan all matter burns simultaneously due to
uniform preconditioning. The point CJ corresponds to the minimum possible velocity of a
steady spontaneous wave, and is equal to the Chapman-Jouguet velocity of a steady deto-
nation. The same part of ihe detonation adiabat, I = CJ, is occupied by weak detonations.
The difference between spontaneous waves and detonations, is that there is no shock wave
presens inside s spontaneous wave. The structure of 8 Chapman-Jouget detonation and &
spontaneous wave of the same strength is shown schematically in Figure 1b.

In a detonation, the material is first shocked (point S in Figure 1}, and chen expands
towards the CJ point along the S -~ CJ line. In the corresponding spontaneous wave, the
material is continucusly compressed along the O - SP line until it reaches the CJ point (or
gome other point SP). The pressure, density, and velocity in a spontaneous wave become
larger than those of a constant volume explosion (point I) because burning does not proceed
simulteneously! There exists a pressure gradient inside the wave pointing opposite to its
direction of propagation, since at any instent the wave consists of fluid elements with
different amounts of released energy. As a result, a fluid element passing through the wave
is compressed and accelerated by this gradient. The slower the wave moves, the longer
is the time spent inside the wave, and the greater are the pressure, density and velocity
jumps across the wave. The principle of causality is not violated in the spontaneous wave,
as explained in [28]. Although the speed of the spontaneous wave is & phase speed, it is o
real supersonic wave of burning which looks like a detonation in terms of the hydrodynamic
parameters of burned material,

We have discussed the situation where the spontancous wave speed is greater or equal




to the CJ detonation velocity, Dcy. Suppose the gradient in induction time is such that
D,, is initially greater than D¢y, but then it decreases so that it becomes less than Dgj.
In this case, when the spontancous wave crosses the CJ threshold, the burned material
immediately behind the wave, which moves with the local sound speed relative to the wave,
will tend to overcome the wave and produce a shock. Consider an intermediate regime with
such a shock, O ~ 0" ~ 8§ - CJ, shown in Figure 1. First, material burns in a spontaneous
wave from O - O', then it is shocked to point §', and then returns to the CJ point. The
transition from the spontaneous wave to a CJ detonation may then proceed through a
sequence of such regimes, with increasing shock strengths.

The description given in the last paragraph is a quasi-steady picture that. is applicable
only if the spontaneous wave velocity changes slowly enough. If the spontanecus wave
velocity changes too fast, that is, the gradient is too steep, the shock snd reaction will
separate, and the CJ detonation will niot form. In the process of transition from spontaneous
wave to CJ detonation, the spontaneous velocity must change slowly enough so that the
shock and reaction do not separate. This means that the nonuniform region must be

large enough so that this separation does not occur, and this, in turn, gives a criterion for
unconfined DDT.

2.2 Formulation of the Problem

Considor an idealized one-dimensional system with the equation of state P = (v~ 1)E, and
T = P/p, where P, T, p and E, are the pressure, temperature, mass density and thermal
energy density, respectively. The chernical reaction is described by a first-order Arrhenius

expression,
aYy Q
-&'t- ==Y exp (.":f) . (2)

where Q is the activation energy, and the chemicsl variable Y ranges from Y = 1 for pure
reactants to ¥ == 0 for total products. Units of distance and time are such that the pre-
exponential factor in equation (1) is unity, and the gas constant is R = 1. Planar geometry
is assumed. The system obeys the Euler equations,

dp 8 _

5 t 5 PV) =0,

oY . 9 ( oy - 3
5t g U+ P) =0, (3)
OE

8
B -+ ‘é‘;((E‘*“P)U) = 0,

where U is the fluid velocity, E = E; + pU?/2 — pqY is the total energy density including
chemical energy, and q is the total energy release per unit mass.




The initial temperature and density of the fuel are Ty and po. The products of isobaric
burning, an approximetion to burning in & laminar fame, have a temperature T} = T +
g (-1-’»;-7‘) By our assumption, we consider a nonuniform region created by mixing the
products of isobaric burning and fresh fuel, such that there is a linear spatial distribution
of reactants Y'(z) and temperature T(z),

_fz/L, 0<zXL
Y(z)"{l, z>L (4)

Tzy=T1 - (h - ) Y(z),

where L is the size of the mixed region. Initially, the velocity of the material is zero, and
the pressure F is constant everywhere. The boundary conditions at z = 0 are reflecting
walls (symmetry conditions).

‘The system is prepared in an initial state and then evolves in time, first until ignition
takes place, then to the formation (or failure) of detonation, and then to the time when
the generated detonation or shock leaves the computational domain. The cases considered
are listed in Table 1. Parameters for the standard case H1 with Fp = 1 and Tp = 1 are
chosen to approximate a detonation in a stoichiometric hydrogen and oxygen mixture at
pressure of 1 atm and temperature of 293 K [29,30]). The extra cases, H2 (Tp = 2) and H3
(To =: 3), are considered to study the sensitivity of the detonation formation to the initial
temperature of the fuel.

The system of equations (2) and {3) is integrated numerically using a one-dimensional
version of a time-dependent, compressible fuid code based on the Piecewise Parabolic
Method (PPM) [31,32]. PPM is & second order Godunov-like method which incorporates
a Riemenn solver to describe shock waves accurately. Shocks are typically spread on one
or two computational cells wide. A piecewise parabolic advection algorithin advects sharp
shockless features, such as density and composition discontinuities or gradients, without
diffusing them excessively or changing their shape. Contact discontinuities are typically
kept two or three cells wide. Details of the implementation are given in [33,34). The chem-
ical reaction is coupled to fluid dynamics by time-step splitting. The kinetic equation (2)
is integrated together with the equation of energy conservation using adjustable substeps
to keep the accurscy better than 1%. The grid spacing is selected so that there are at least
10 cells within a detonation wave reaction zone. The convergence of numerical solutions
was thoroughly tested by varying the number of computational cells from 1024 to as many
as 65530 in some ceses.




2.8 Detonation Formation Inside the Mized Region

The induction time 7 as 8 function of temperature T and fuel fraction Y can be expressed

“ a2 () ol

using the Frank-Kamenetskii approximation [35], valid when 7'/Q << 1, and sssuming the
indaction takes place at constant volume. The derivatives of 7 with respect to T and Y are

br . _TQ or T (6)
8r~ T2 8Y T Y

For the mixture considered here, the values of T and Y are related by equation (4). The
function 7(T,Y(T)) then has & minimum at T,,, found by colving d7/dT" = 87/8T +
(07/8Y)(dY/dT} = 0, so that

T2+QTn—-QTy =0. (7)
This gives
14 4% -1 T,
= Q e - 21
z . L (Tl - Tm) LT}
T Ty -To 2Q °

for To << T3. The point z, is the first to ignite. From this point, a spontaneous reaction
wave propagates with the speed

_ o {drNTh TX(T - T}) L
Dor = (dx) T (@ -T) T+ QT - QN T ®

By virtue of =, ‘tion (7), the speed of the reaction wave is infinite at point z,,. Thus,
the reaction wave initially propagates supersonically, as described in Section 2.1 We are
interested in the propagation of the wave to the right, z —+ L, where the energy released
by the wave increases. The velccity of the wave decreases towards larger z, and becomes
equal to the local sound speed at some point z, determined by

Dip(xl) = D¢y . (10)

At this point, a pressure wave forms which runs into the mixture shead of the decelerating
reaction wave. Whether this pressure wave is strong enough to accelerate burning and to
evolve into a detonation wave depends on the length L of the mixed region.




There are two processes involved in the transformation of the pressure wave intc a
detonation. First, the pressure wave must steepen into a shock. This shock must accelerate
burning so that a shock-teaction complex forms. Second, the shock-reacticn complex must
survive the propagation down the temperature gradient. We denote as L, the first critical
length of the mixed region such that for L < L, the shock-reaction complex does not. form.
For L > L,, the shock-reaction complex successfully forms within the mixed region. We
denote as Ly the second critical length of the mixed region such that for £ > Ly, the shock-
reaction complex survives and passes as a detonation into the cold fuel. For L, < L < Ly,
the shock-reaction complex dies inside the mixed region.

Values of L, and Ly were determined by the numerical simulations described in Section
2.2 by performing a series of simulations in which the size L of the mixed region was
varied. Figures 2--5 show results of simulations for H1 for four different choices of L. Each
figure shows the evolution with time of the pressure, velocity, temperature, and reactant
concentration. Figure 2 shows the vesults for the smaliest mixed region, L = 30zg4, where 24
is the half-reaction width of a C ¢zt-nation. This region is s0 small that the quasi-steady
spontaneous wave cannot form. The pressure wave is too weak to form a shock-reaction
complex. The pressure wave generated by the spontaneous burning steepens into a shock
outside of the mixed region.

For L = 300zg4, shown in Figure 3, a shock wave forms at the point predicted by
equation (10), and the complex forms. The simulations show that the shock-reaction com-
plex is far from a steady CJ detonation and cannat be described as a small quasi-steady
deviation from the CJ state. The peak press dre is at least & factor of two less than the von
Neumenn pressure for the equivalent CJ detonation at the local condition. Figure 3 shows
that, soon after the complex is formed, the reaction zone and shock wave separate, and
only a shock wave leaves the mixed region. This is because the shock--reaction complex,
after being formed, must propagate through the mixture with continnously decreasing tem-
perature. The temperature gradient causes rapid decrease in the postshock temperature,
and, conseciuently, rapid growth of the induction time in the postshock material.

Figures 4, L = 500z4 < L4. shows & casc similar to Figure 3, but the shock~reaction
complex decouples close to the end of the mixed region. In Figure 5, L = 960zy4 > Ly,
the complex transforms into a detonation, and passes into the cold unmixed fuel. The
critical condition for the initiation of detonation in mixed fuel and products is that the
shock-reaction zone complex survives its propagation through the temperature gradient.
The critical lengths, Ly, of a region capable of triggering & detonation, as determined by
such simulations, are presented in Table 1 for cases H1 -~ H3.




The value of the critical length Ly is sensitive to initial ternperature Ty. An increase
of Ty facilitates the initiation of detonation. Cases H2 and H3 in Table 1 show that L,
decreases by a factor of six if the initial temperature is tripled. This can be explained if
the criterion for the detonation formation is not the creation, but rather the survival of the
shock-reaction complex. For higher initial temperature, the postshock induction time is
less sensitive to variations of background conditions (see equation 6), and so it is easier for
the shock-reaction complex to adjust to changing conditions.

2.4 Relation to Jet Initiation Experiments

One possible check on the theory described above for determining Ly is to compare the
predictions of Section 2.3 with the results of turbulert jet-initiation experiments {18,21--24).
In these experiments, a jet of hot product gases in injected into an unburned, cold mixture.
The jet can be characterized by the size of the orifice, J, through which hot products are
injected. The turbulence caused by the interaction of this jet and the background gas
creates & nonuniform, preconditioned region in which detonation may occur. The largest
scale of the turbulence and the size of the mixed region are also characterized by d. For
these experiments, the effects of reflected shocks and interaction with walls is believed to
be small. The velocity of the jet is approximately sonic with respect to the unburned
background material, Thus the strengths of the shocks formed by the exiting jet resulted in
overpressures in the unburned gas of about & factor of two or less. The temperature increase
was small. Ignition occurred in the jet and seemed to be unaffected by wall interactions.

Depending on d, two distinct ignition regimes were found. For small d, deflagrations
were ignited at many points inside the mixed region. There was no transition to detonation.
For larger d, there was an explosion in the mixed region that led to detonation. From these
experiments, the minimura value of d for which DDT occurred was d > 10 ~ 20!, where .
is the detonation. cell size.

The half-reaction zone length z4, in terms of which we derived our estimates of Ly,
is a theoretical parameter. What is measured in experiments is a detonation cell size .
In order to estimate [, for the case H1, we use the results of two-dimensional simulations
of detonation cell structure for conditions similar to H1 [30]. Scaling the results of these
simulations to nondimensional units, we find |, &~ 27z4, where we have taken I, to be
the height of & detonation cell. That is, the critical size of the mixed region in case H1 is
Lg = 36l,. Thus the theoretical estimate of Ly is in qualitative agreement with experiments.
The somewhat larger theoretical value, 361, compered to 10 - 20l,, could be the resuit of
the simplifying assumptions (one-step kinetics, neglect of multi-dimensional effects) made



in this paper.

There have been other efforts to relate Ly to .. For example, Knystautus et al.
[18] found that Lg =~ 13i, based on the analogy between DDT and direction initiation
of detonation by an energy source. Dorofecv et al. [21] report Ly > 7l. based on their
computations.

3. Critical Turbulent Velocity for DDT

2.1 Preconditioning by Turbulence

The discussion in the previous section established that the size of the region required
to trigger a detonation is large compared to the one-dimensiona! detonation thickness,
Ly ~ 103z, for case H1. Now the question is how to create this region. In an unconfined
space, turbulence is the only mechanism available. The turbulence in the region of size
Lgs must be strong enough to create microscopic mixing in this region. Turbulence on
large scales must be intense enough to pack individual laminer flame sheets close together.
Turbulence on small scales must be strong enough to broaden and destroy individual flame
sheets so that the products and fuel can mix to form a microscopic region with a gradient
of induction times.

There are generally two regimes of turbulent lames we need to consider. The first is a
regime of multiple flame sheets, in which the flame is irregular on large scales but laminar
on smeall scales. The second is the distributed burning regime, in which the turbulence
is 80 strong that it modifies the laminar flame structure (See, for example [36,37). The
transition between the multiple flanmie sheet and distributed burning regimes represents the
condition where the creation of the large-scale nonuniform distribution of induction times
becornes possible. The flame will be aflected by the turbulence on scales X 2 Ag, on which
the turbulent velocity is greater than or equal to the laminar flame speed, §;. Here g is
the Gibson scale defined by the condition

U{rg) = S (1)

where U()) is the turbulent velocity on the scale A. The transition between the two
turbulent regimes happens approximately when Ag approaches the thickness of the laminar
flame z; {36). This estimate is approximate and does not account for the effects of viscosity,
which becomes important when Ay epproaches the viscous microscale Ax. The viscosity
destroys turbulent eddies of size ;. Poinsot et al. [38) have shown theoretically that because
of this effect, eddies larger than Ag with velocitiy greater than §; are needed to quench the
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fame. This has been substantiated by the experimental work by Roberis and Drigsoll (39]
who showed that eddies a factor of four larger are required.

Consider, for simplicity, a Kolmogorov cascade inside the turbulent flame brish such
that on the scale ), the turbulent velosity is

Uy ~Ug (Z) . (12)

where £ is the driving scale of the turbulence, which could be approximately equal to or
larger than the size of the turbulent flame brush, and U is the turbulent velocity ou this
scele. In this case, the Gibson scale A becomes

Si\3 .
Ag ~ (-5;) C. (13)

The condition Ag = x; now can be used to define the intensity of the turbulent motions
needed for DDT,

C 1/3
Us=K S (?) , (14)
!

where we introduced a coefficient K = 1 which describes the ability of the laminar flame
to survive stretching and folding caused by turbulence on scales of the order of z;. Once
the condition of equation (14) is reached for £ > Ly, DDT can occur by the gradient
mechanism.

For a typical flame, the thickness of the laminar flame 1z, is approximately an order of
magnitude less than x4. That is, Ly =~ 10%2;. For a flame with Lafz; = 10%, the intensity
of turbulent motions required for DDT on the scale of La must be about Up, =~ 208), as
follows from equation (14). For example, consider an squimolar acetylene-oxygen flame
with a laminar flame speed of 5 m/s [40]. ;From equation (12), the critical intensity of
turbulent motions is approximately Uz = 100 m/s, The critical turbulent velacity could be
considerably less in confined conditions because of the presence of shocks.

In unconfined situations, there are two possible sources of turbulence, the Landau-
Darrieus (L-D) instability and the Rayleigh-Taylor (R-T) instability. The L-D instability
is an intrinsic hydrodynamic flame instability that does not require external acceleration.
The intensity of +} 2 I-D induced turbulent motions is unlikely to be much larger than
St because of nonlinear stabilization effects [41). The L-D instability ie thus not likely
to produce the level of turbulence required for DDT in any reasonable conditions. The
characteristic turbulent velocity associated with the R-T instability on scale I is of the
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order of =~ /gL =2 3v/L m/s for L iz meters. The level of turbulence required for DDT can
thus be achieved only on scales of ~ 100 m. This could explain why DDT in unconfined
situations is so rarely observed. To obtain DDT in the laboratory, we need some other way

of inducing much higher turbulent intensities.

8.2 Secondary Effects

When a region smaller than L, ignites, it can still generate & substantial shock. The
dependence of the maximum shock pressure on L found from the simulations is shown in
Figure 6. The shock strength is high for L larger than, say, 0.514, but rapidly decreases
for smailer L. There are two possible effects these shocks may produce, one related to the
temperature increase and ancther to vorticity created by the shocks.

The shock may raise the temperature in a region of the mixture that is about to
explode, and this may facilitate the survival of the shock-reaction complex. Table 1 shows
that the increase of the initial temperature from Ty = 1 to Tp = 2 decreases Ly by a factor
of four. The increase of the initial temperature by a factor of two requires, however, a shock
strength P, /P, ~ 8. This shock strength can be provided enly by explosions of regions of
size L > 0.5Ly (see Figure 6). That is, this effect may slightly decrease the one-dimensional
estimate of Lg, but is not likely to change it drastically.

Another effect of a failed initiation on the surrounding materisl might be the baroclinic
generation of additional vorticity [1,42). Such a secondary source of turbulence reduces the
amount of turbulence that must be generated by the primary sources. The turbulent
velocity induced by this mechanism may be of order of the postshock velocity. This source
of secondary vorticity may be very important in facilitating DDT, but only when the
conditions arc already close to critical. The amount of secondary vorticity will rapidly
decreese with decreasing L. We conclude that our estimate of Ly may decrease by a factor
of about two, but will not change drastically if the baroclinic mechanism is taken into
account.

The major uncertainty in the estimation of the required turbulent velocity comes from
our lack of exact knowledge of flame behavior on scales ~ z; in the turbulent velocity field.
The standard definition of the Gibson scale as the scale at which the turbulent velocity is
equal to the lacninar flame speed, U, = 8, and the assumption that microscopic mixing
begins when g = z¢, gives K = 1 in equation (14). As mentioned above, recent work by
Poinsot et al. {38] and Roberts and Driscoll (39] suggest K > 1. There is also some evidence
from numerical simulations of turbulent flames that this coefficient might be K ~ 3 —~ 5,
which would increase the critical turbulent velocity accordingly [33]. This must be studied
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in future numericel simulations and experiments.

The same kind of mixing and flame quenching must also take place in the flame brush
of a turbulent deflagration in a tube in order to have DDT in & confined situation. Although
shock preconditioning definitely plays an important role in confined sitvations, there should
be a qualitative similarity between triggering detonation by the explosion in the middle of
the brush and DDT in unconfined conditions. Carefully planned experiments on DDT
in tubes with quantitative characterization of the the turbulent velocity field prior to the
explosion in the brush might be used to shed light on the exact value of coefficient X.

4. Conclusions

There are two key elements to the theory presented above for unconfined DDT:

1. The size of the region Ly that can trigger DDT in @ miziure of hot burning product end
fuel. We estimate that Ly ~ 10324, where z, is the thickness of the one-dimensional
reaction zone of the Chapman-Jouguet detonation, or Ly =~ 36 l., where [, is the
detonation cell gize, or Ly =~ 10%z;, where x; is the laminar flame thickness. This
implics that large-scale mising is required to precondition the region.

2. The intensity of turbulent motions required for the region of size Ly to undergo DDT.
This is estimated from the requirements that the Gibson scale inside this region be
comparable to or less than the thickness of the laminar flame {equation 14). This
requires the speed of the turbulent flame brush to be ~ 10? times faster than the
laminar flame. '

The criterion of DDT in unconfined Aames given here can he formulated in terms of the
following three parameters of a reactive gas: the one-dimensional thickness of a CJ detcna-
tion, z4, the velocity Si, and the thickness z; of the laminar flame. ‘The critical size of the
mixed region Ly can be directly related to z4 (Section 2.3), and the latter two parameters
determine the critical intensity of turbulence in the mixed region required for triggering
DDT (Section 3.1).

The high turbulent velocity required for unconfined DDT is extremely difficult to
achieve by turbulence generated by the flame itself or by the Rayleigh-Taylor instebility,
which explsins why DDT in unconfined flames is 8o hard to observe. The critical size of
the region Lg derived in this paper is in agreement with the results of hot jet initiation
experiments. The theory may also be extended to confined DDT in the cases when the
explosion leading to dctonation takes place in the middle of e turbulent 8ame brush.
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Table 1

Table — Simulaced Cases

Case To v 9 @ Ty T, Ty zd L,/z4 Li/za
H1 1 1333 24 283 7.0 5.8 10.3 51.2  ~2x10° 05 x 102
H2 2 1.333 24 283 80 7.1 114 23 - 3.3 x 102
H3 3 1.333 24 283 9.0 8.3 12.5 23.5 - ~ 2 x 102
Ts Initial fuel temperature.

- Adiabatic index.

q Total chemical energy release.

Q Activation energy.

T Temperature of products of isobaric burning.

T, Postshock temperature in a Chapman-Jouguet detonation.

T4 Temperature of Chapman-Jouguet detonation products.

4 Half reaction zone length of Chapman-Jouguet detonation.

L, Critical length for shock-burning synchrosization.

L4 Critical izngth for detonation survivel in cold fuel.
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